
ASTRAevo

EU product Made in Italy

AIR OPERATED DOUBLE DIAPHRAGMS PUMPS

...there's something new in the air...

ASTRAevo

Advantages and technologies page 04-11

Astraevo Aodd pumps page 14-21

INDEX

Astraevo Food Aodd pumps page 22-26

Why an AODD pump?

Safe

ARGALAIR pump is operated by compressed air and are intrinsically safe. Able to run dry

Self-priming

The pump design allows high suction lift even at drystart and with heavier fluids.

Shear Sensitive

The gentle pneumatic movement makes the ARGALAIR an excellent choice for shear sensitive fluids.

Portable and simple installation

the application site. Simply connect your air supply line and liquid lines and the pump is ready to perform. There is no complex control for installing and operating.

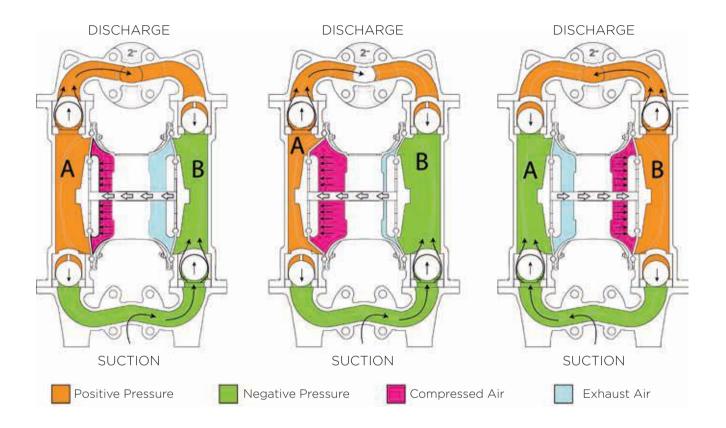
Variable flow rate and discharge pressure

ARGALAIR offers the ability too vary flow and discharge pressure up to 120 psi with a simple adjustment of the air supply

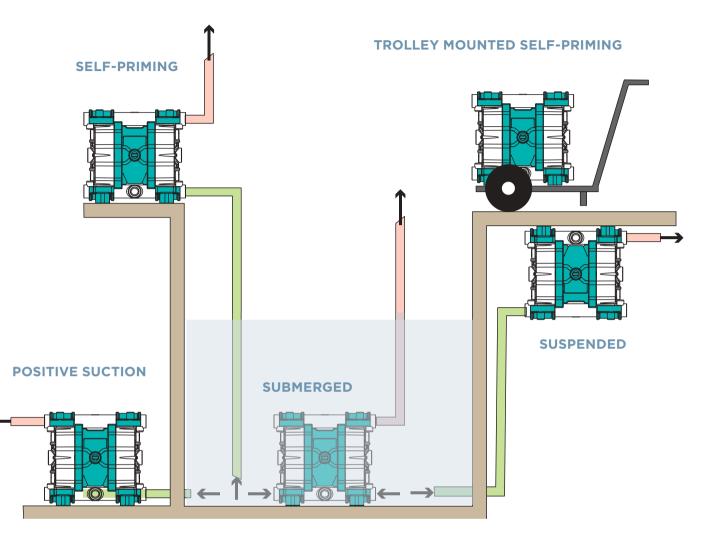
Handles a wide variety of fluids with high solids content

No close fitting or rotating parts so liquids with high solids content can be easily pumped, actually any liquids with max of 90% solids.

Dead-head


Because the discharge pressure can never exceed air inlet pressure, the discharge line can be closed with no damage or wear. The pump will simply slow down and stop.

AODD ARGAL VS OTHERS	AODD	Centrifugal	Lobe	Gear	Progressive	Peristaltic	Pilon pump
Variable Flow & Head Control (inherently adjustable)	•	•	•	•	(Screw)	(Hose)	Plunger
Deadheads Safely (at zero energy consumption)			\bigcirc	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$
Dry-Running		Ο	0	0	0	0	0
Dry-Priming (lift installations)		0	0	0	0		$\overline{}$
No Mechanical Installation Alignment Required		0	0	0	0	0	0
No Electrical Installation Required		0	0	0	0	0	0
Portability		$\overline{}$	\bigcirc	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$
Submersible		$\overline{}$	0	0	0	0	$\overline{}$
Sealless (no packing or mechanical seals)		$\overline{}$	\bigcirc	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$
Cavitation Tolerance (low NPSHr)		0	\bigcirc	$\overline{}$		$\overline{}$	$\overline{}$
Low Shear & Degradation		0		\bigcirc	\bigcirc	\bigcirc	\bigcirc


= Suitable = Limitations = Not Recommended

... operating principles

The pneumatic distribution system sends compressed air behind one of the two diaphragms (A), which pushes the fluid towards the delivery circuit. Simultaneously, the opposite diaphragm (B) is in the intake phase as it is dragged by the shaft that connects it to diaphragm (A), under pressure; air presents behind diaphragm (B) is discharged into the environment through the flow rate regulator on the pump, while a pressure drop is created in the fluid chamber which 'sucks' the fluid from the suction circuit. When the diaphragm (A), under pressure, reaches the stroke limit, the distributor switches the two inputs to the chamber on the diaphragms air side, putting diaphragm (B) under pressure and diaphragm (A), in discharge. When the pump reaches its original starting point, each diaphragm has carried out one air discharge stroke and one fluid delivery stroke. This sequence of movements makes up a complete pumping cycle.

... easy to apply

Thanks to its multiple and simple installations, the pumps are convenient for every operation, from transfer to supply, circulation, injection, evacuation or liquid metering.

Made in Italy 7

Why choosing an ARGALAIR AODD pump?

... high-quality materials

Our AODD pumps are obtained using the best thermoplastic polymers.

Moulded with injected polymers reinforced with composite fiber, AOOD pumps guarantee an optimal mechanical seal as well as a notable corrosive resistance.

Solutions are in fiberglass polypropylene (**GRF/PP**) and in polyvinylidene fluoride reinforced with carbon fiber (**CFF+PVDF**) and are also available in ATEX ZONE 1 - application version, for strict and dangerous areas.

The metallic variations can be distinguished for their reliability in **aluminum and AISI 316L** of the ASTRAevo range, it's present a version compliant to FDA standard called ASTRAevo Food.

... a complete range

A "custom-made production series" cover the entire market requirements but not only: ASTRA and MISTRAL ranges offer various alternatives for the most requested dimensions.

For the compact sizes **from ¼" to ½"**, Argal submits six models corresponding to the different materials.

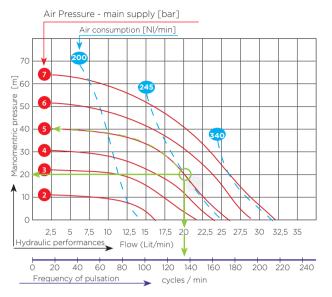
Four other models are available for the medium sizes until 1". Two versions are realised for the 11/2" as well as for the 2".

We are part of the ring of few world designers to offer large sizes from 3" to 4".

Last but not least, Argal designed and produced a range of economically and energetically advantageous pumps capable of sensible air consumption savings with same dimensions but different performances at an affordable price.

""'ci f`Yl dYf]YbW`]b`h\Y`Wdffcg]j Y`UbX` UVfUg]j Y`k cf`X

With our forty-year experience in corrosive and abrasive applications, we are specialists in design and problem-solving. Our goal is to offer a wide production program with high-quality and competitive prices solutions.



WETTED PARTS	DIAPHRAGM 2	VALVE 3 BALLS	VALVE 4 SEAT	APPLICATIONS
GRF/PP	TEFLON®	TEFLON®	РР	Great chemical resistance. Optimal aspiration dry and silent. Adapted to paintings
GRF/PP	TEFLON®	AISI 316	AISI 316	High viscosity products. Glues and resins
GRF/PP	Santoprene®	EPDM	UPPE	High abrasion resistance
Aluminum	Hytrel®	TEFLON [®]	Aluminum	Economic solution adapted for pumping hydrocarbons
Aluminum	TEFLON®	TEFLON®	Aluminum	Solvents. Inks. Painting
CFF/PVDF	TEFLON®	TEFLON®	PVDF	Aggressive acids. High temperatures >=80°C
AISI 316L	TEFLON®	TEFLON [®]	AISI 316	Aggressive acids. High temperatures <=110°C
AISI 316L	TEFLON®	AISI 316	AISI 316	Very high-viscosity and high temperatures
AISI 316L Polished	TEFLON®	TEFLON®	AISI 316 Polished	Food. Cosmetic (spheres version and polished AISI 316 polished seats for high viscosity products)
AISI 31L6 Polished	TEFLON®	AISI 316 Polished	AISI 316 Polished	Food. Cosmetic. High viscosity.

Made in Italy 9

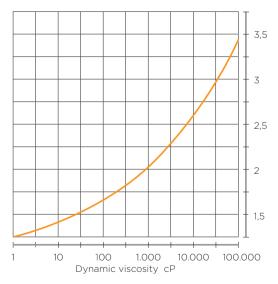
INSTRUCTION FOR CHOOSING PNEUMATIC PUMPS

Duty point - example: Flow 20 I/min - Manomentric pressure 20 m.

- Air pressure main supply: 5 bar
- Air consumption: 245 NI/min
- Frequency of cycles: 135 cycles/min

Lifting the liquid from a negative height reduces the flow of the pump as in standard circumstances (flooded suction).

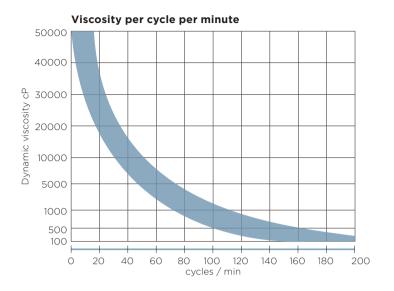
The maximum negative head is a function of the plant characteristics (hydraulic losses), the fluid's physical characteristics (density, viscosity, boiling point).


Air supply

Air consumption	Pump intake air pipe external Ø	Air compressor absorbed power (approx.)
NI / min	mm	HP
50	6	0.5
100	6	1
200	6	2
250	8	2.5
350	8	3.5
450	8	4.5
550	8	5.5
850	10	8.5
1000	10	10
1500	12	15
2000	12	20
3500	12	30
4000	15	40

The power truly absorbed by the air compressor is around 70% of the value indicated in the table.

The inlet pipe must be less than 1 meter to have the nominal values.


If the fluid is viscous, it increases the diameter of the pipelines by multiplying the coefficient reported below.

Multiply coefficient for pipeline diameter referred to a non viscous fluid and constant hydraulic losses.

10 ARCALLAN

A general indication assumes that the more fluid is viscous, and the less number of cycles per minute is performed.

ASTRAevo DRUM

Perfect for emptying barrels, drums, cans.

MAIN APPLICATIONS

- AUTOMOTIVE INDUSTRY
- CHEMICAL INDUSTRY
- FOOD INDUSTRY
- WASTE DISPOSAL TECHNOLOGY

ASTRAevo GEMINI

Delivery and suction manifolds can be doubled in this configuration so that two products can simultaneously be pumped.

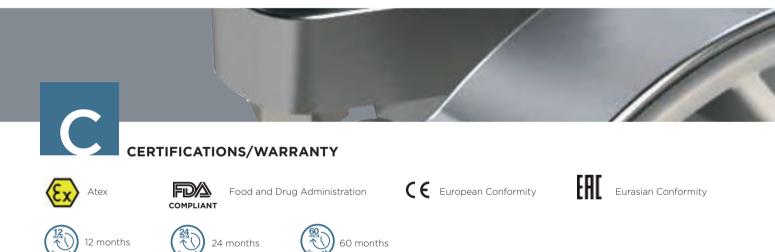
MAIN APPLICATIONS

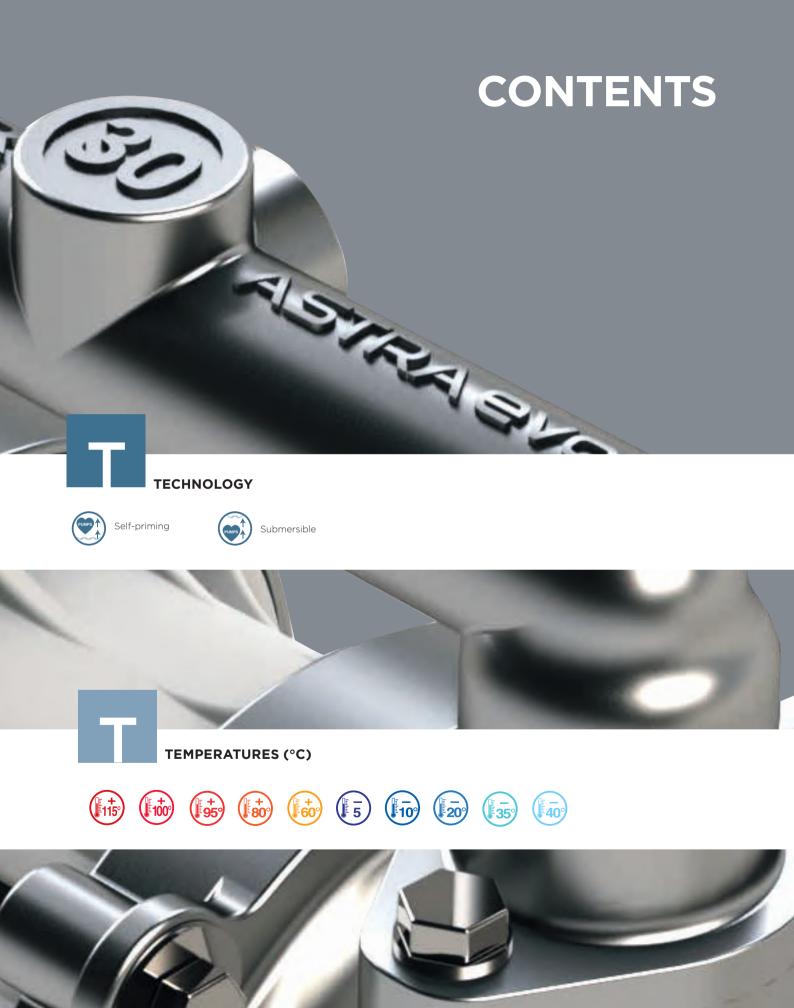
- FLEXOGRAPHIC INDUSTRY
- PAINTING INDUSTRY
- PAPER PROCESSING
- PRINTING INDUSTRY
- WASTE WATER TECHNOLOGY

Made in Italy 11

PVDF+C carbon filled

24 months


PP+G glass reinforced


Aluminium

Stainless Steel (low carbon)

60 months

AODD PUMPS WITH THERMOPLASTIC CENTER

ASTRAevo

ASTRAevo range is ideal for the most **various industrial applications.**

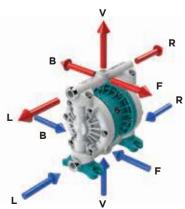
This newest project made with the very last technologies guarantees a major reliability and performance of the pump: lifetime and diaphragms are improved, as well as perforance and air consumption, and maintenance operations are reduced.

D ASTRA GI

MAIN APPLICATIONS

- Chemical industry
- Automotive
- Textile
- Graphic
- Leather tanning
- Electroplating ceramics
- Paints
- Ink
- Paper
- Construction
- Water and Waste treatment

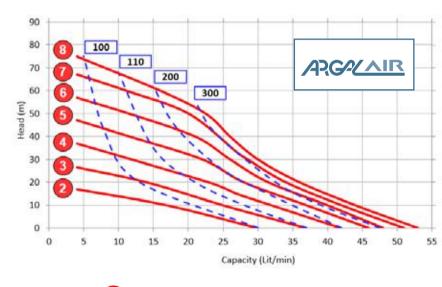
ASTRAevo OVERVIEW



ASTRAevo (*)	Flow rate (I/min")	Ports (inch)	Materials	Solids (mm)
DDE 30	52	1⁄2"	• PP+G • PVDF+C • ALU • AISI 316L	3,5
DDE 60	76	1⁄2"	• PP+G • PVDF+C • ALU • AISI 316L	3,5
DDE 100	130	1"	• PP+G • PVDF+C • ALU • AISI 316L	3,5
DDE 160	175	1"	• PP+G • PVDF+C • ALU • AISI 316L	7,5
DDE 400	370	1 1⁄2"	• PP+G • PVDF+C • ALU • AISI 316L	8,5
DDE 650	715	2"	• PP+G • PVDF+C • ALU • AISI 316L	8,5
Note: available PP+C for A	ATEX plastic versions		(*) Max pres	sure 8 bar
STANDARD CONNECTIONS	CONNECTIONS SCHEME	ON REOUEST		

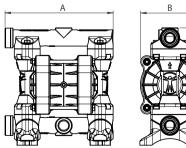
STANDARD CONNECTIONS

CONNECTIONS SCHEME ON REQUEST



Connections scheme referring to all Plastics and Aluminum pumps. About stainless steel pumps are possible up to model 160. All Astraevo Food are excluded.

Pump Packaging


PVDF+C

bar Air Pressure main supply

Pump Packaging

NI/min Air consumption

DIMENSIONS (mm)			
PP+G	A 193 B 106 C 209		
PVDF+C	A 193 B 106 C 209		
ALU	A 194 B 107 C 205		
AISI 316L	A 203 B 106 C 197		

B	
<i>.</i> 0,	
	υ

TECHNICAL DATA ½″ BSP • NPT* Fluid connections • FLANGED* DN15 Air connection 6 mm Max flow rate 52 l/m' Max air pressure 8 bar Max delivery head 80 mca Max suction lift dry 4 mca Max suction lift wet 9,8 mca Max size solids 3 mm Noise level 72 dB(A) 70 **Displacement per cycle**

Pump Packaging

Pump Packaging

COMPOSITION			
Wetted parts	• PP+G • PVDF+C • ALU • AISI 316L		
Diaphragms	• KEYFLEX + PTFE • SANTOPRENE + PTFE • KEYFLEX • SANTOPRENE		
Valve Balls	• PTFE • AISI 316 • EPDM • NBR		
Valve Seats	• PP • PVDF • AISI 316 • UPPE		
Gaskets	• EPDM • FKM • NBR • PTFE		

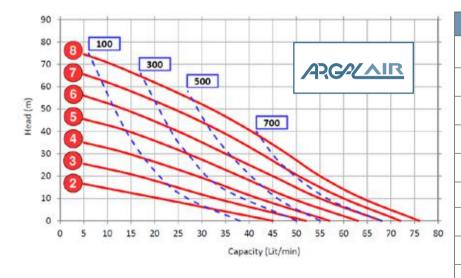
Connections scheme page 15

* Optional

PP+G

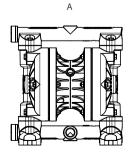
ACALAIR

÷

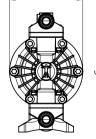

Pump Packaging

TECHNICAL DATA		
Fluid connections	1⁄2" BSP • NPT* • FLANGED* DN15	
Air connection	¾ " BSP ∙ NPT*	
Max flow rate	76 l/m'	
Max air pressure	8 bar	
Max delivery head	80 mca	
Max suction lift dry	4 mca	
Max suction lift wet	9,8 mca	
Max size solids	3,2 mm	
Noise level	75 dB(A)	
Displacement per cycle	160	

COMPOSITION		
Wetted parts	• PP+G • PVDF+C • ALU • AISI 316L	
Diaphragms	• KEYFLEX + PTFE • SANTOPRENE + PTFE • KEYFLEX • SANTOPRENE	
Valve Balls	• PTFE • AISI 316 • EPDM • NBR	
Valve Seats	• PP • PVDF • AISI 316 • UPPE	
Gaskets	• EPDM • FKM • NBR • PTFE	


DIMENSIONS (mm)				
PP+G	A 243 B 160 C 260			
PVDF+C	A 243 B 160 C 260			

A 245 B 160 C 254


A 247 B 160 C 248

Air Pressure main supply

bar

NI/min Air consumption

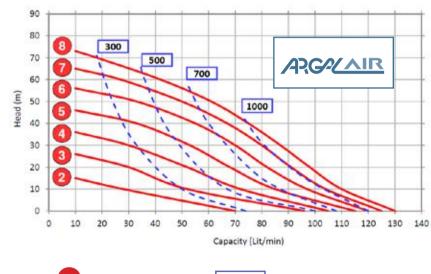
Connections scheme page 15

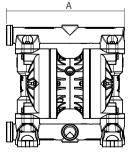
* Optional

ALU

AISI 316L

Made in Italy 17


(0,4 Kg



bar Air Pressure main supply

NI/min Air consumption

DIMENSIONS (mm) PP+G A 288 B 170 C 297 PVDF+C A 288 B 170 C 297 A 292 B 170 C 289 ALU AISI 316L A 203 B 170 C 288

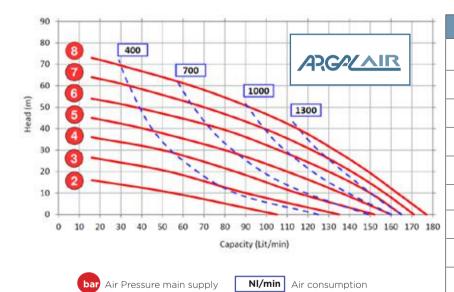
Connections scheme page 15

TECHNICAL DATA	
Fluid connections	1" BSP • NPT* • FLANGED* DN25
Air connection	¾ " BSP • NPT*
Max flow rate	130 l/m'
Max air pressure	8 bar
Max delivery head	80 mca
Max suction lift dry	4 mca
Max suction lift wet	9,8 mca
Max size solids	5,5 mm
Noise level	80 dB(A)
Displacement per cycle	240

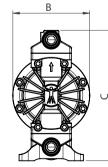
COMPOSITION	
Wetted parts	• PP+G • PVDF+C • ALU • AISI 316L
Diaphragms	• KEYFLEX + PTFE • SANTOPRENE + PTFE • KEYFLEX • SANTOPRENE
Valve Balls	• PTFE • SS • EPDM • NBR
Valve Seats	• PP • PVDF • AISI 316 • UPPE
Gaskets	• EPDM • FKM • NBR • PTFE

* Optional

ACALAIR



Gaskets

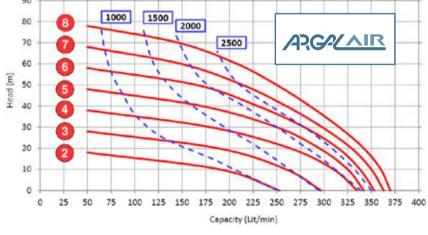


TECHNICAL DATA	
Fluid connections	1" BSP • NPT* • FLANGED* DN25
Air connection	¹⁄₂" BSP • NPT*
Max flow rate	175 l/m'
Max air pressure	8 bar
Max delivery head	80 mca
Max suction lift dry	4,5 mca
Max suction lift wet	9,8 mca
Max size solids	6 mm
Noise level	80 dB(A)
Displacement per cycle	440

DIMENS	SIONS (mm)
PP+G	A 310 B 203 C 345
PVDF+C	A 310 B 203 C 345
ALU	A 310 B 203 C 335
AISI 316L	A 312 B 203 C 322

* Optional

Noise level	80 dB(A)
Displacement per cycle	440
COMPOSITION	
Wetted parts	• PP+G • PVDF+C • ALU • AISI 316L
Diaphragms	• KEYFLEX + PTFE • SANTOPRENE + PTFE • KEYFLEX • SANTOPRENE
Valve Balls	• PTFE • AISI 316 • EPDM • NBR
Valve Seats	• PP • PVDF • AISI 316 • UPPE


Made in Italy

• EPDM • FKM

• NBR • PTFE

19

WR 600 ($\begin{array}{c} \hline \\ 5 \\ \hline \\ 5 \\ \hline \\ \\ 5 \\ \hline \\ \\ \\ \\ \\ \\$	(FC) (from the second	(10) (10) (38) $(2,2)$ (50) (10) (38) $(2,2)$ (50)	(10) (10) (54) (4) (54) $($
90	1000 1500		TECHNICAL DAT	A

bar	Air	Pressure

NI/mi e main supply

in Air consumption	
---------------------------	--

in	Air	consumption

in	Air consumption

in	Air consumption
	/ III Gongannbergin

Air consumption

М

Max delivery head	80 mca
Max suction lift dry	4,5 mca
Max suction lift wet	9,8 mca
Max size solids	7 mm
Noise level	80 dB(A)
Displacement per cycle	1.340

Fluid connections

Air connection

Max flow rate

Max air pressure

11⁄2" BSP* • NPT*

• FLANGED DN40

3⁄4" BSP • NPT*

375 l/m'

8 bar

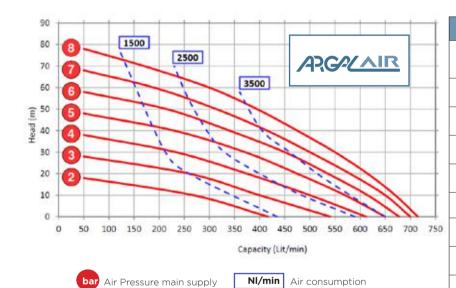
	COMPOSITION	
	Wetted parts	• PP+G • PVDF+C • ALU • AISI 316L
U	Diaphragms	• KEYFLEX + PTFE • SANTOPRENE + PTFE • KEYFLEX • SANTOPRENE
	Valve Balls	• PTFE • AISI 316 • EPDM • NBR
	Valve Seats	• PP • PVDF • AISI 316 • UPPE
	Gaskets	• EPDM • FKM • NBR • PTFE

DIMENSIONS (mm)		
PP+G	A 465 B 263 C 573 M 317	
PVDF+C	A 465 B 263 C 573 M 317	
ALU	A 467 B 263 C 573 M 317	
AISI 316L	A 400 B 263 C 501 M 317	

Connections scheme page 15

* Optional

AZGALAIR


41,5 Kg + (2,2 Kg

Pump Packaging

C

TECHNICAL DATA		
Fluid connections	2" BSP* • NPT* • FLANGED DN50	
Air connection	¾" BSP • NPT*	
Max flow rate	715 l/m'	
Max air pressure	8 bar	
Max delivery head	80 mca	
Max suction lift dry	4,5 mca	
Max suction lift wet	9,8 mca	
Max size solids	9 mm	
Noise level	80 dB(A)	
Displacement per cycle	3.820	

DIMENSIONS (mm)		
PP+G	A 594 B 345 C 690 M 381	
PVDF+C	A 594 B 345 C 690 M 381	
ALU	A 592 B 345 C 687 M 381	
AISI 316L	A 479 B 345 C 695 M 381	

Connections scheme page 15

* Optional

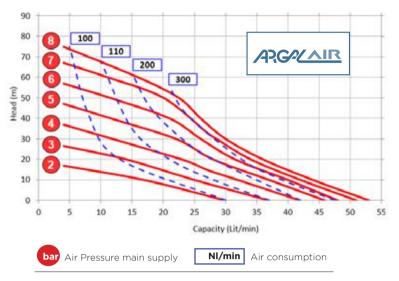
	В
381	
381	
81	
81	M

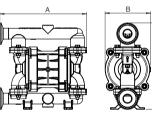
COMPOSITION			
Wetted parts	• PP+G • PVDF+C • ALU • AISI 316L		
Diaphragms	• KEYFLEX + PTFE • SANTOPRENE + PTFE • KEYFLEX • SANTOPRENE		
Valve Balls	• PTFE • AISI 316 • EPDM • NBR		
Valve Seats	• PP • PVDF • AISI 316 • UPPE		
Gaskets	• EPDM • FKM • NBR • PTFE		

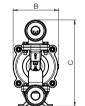
ASTRA evo FOOD

ASTRAevo FOOD range can be used for handling and pumping products from food industry and related ones. These pumps comply with **FDA recommendations**, as the parts in contact with the fluid are made of **AISI 316 electro-polished** with *125 Ra* finish and PTFE - both certified for food usage.

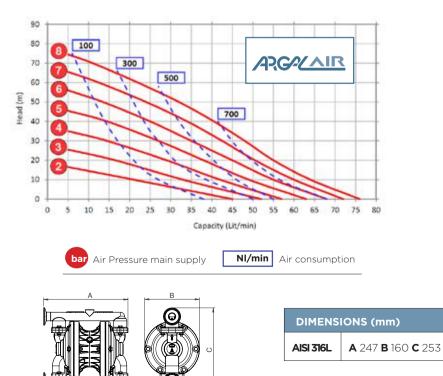
FOOD INDUSTRY		COSMETIC PHARMACEUTICAL INDUSTRY		VARIOUS INDUSTRY	
Product	сP	Product	сP	Product	сР
Butter	50.000	Toothpaste	200.000	Oil SAE70	18.000
Mayonnaise	6.000	Glycerin	1.400	Barbotine	50.000
Honey	1.500÷3.000	Shampoo	250	Grease lubr.	2.000
Marmalade	<1.000			Mineral oil	800
Tomato sauce	180			Oil SAE30	350
Yogurt	100			Varnish	300
Olive oil	100	PRODUCTS VISCOSITY			


Thanks to their characteristics and design **ASTRAevo FOOD** series can be applied for the transfer of fluids deployed in industries as food, the cosmetics, pharmaceuticals, or chemical additives, beverages, dairy, biotechnologies, medical appliances, paint and in all those applications where a quick release clamp connection is required or appreciated. These pumps are usually used to transfer or to remove the products from the mixing contains or storage basins or to pack them in bottles or similar containers. The air operated double diaphragm pumps **ASTRAevo FOOD** are constructed with materials compliant with the FDA regulation: the wet parts are made of AISI 316 electro-polished and the surface finishis made of **125 Ra** (average **2,7 µm**) both certified for food




applications. All **ASTRAevo FOOD** pumps comply with ATEX Zone 2 regulation and are adequate to operate in areas with atmosphere potentially explosive and, with the variant of the conductive executions, can operate also in areas classified ATEX Zone 1. These pumps are capable to pump fluids with very high viscosity and temperature up to **95°C.** All other constructive features and functional characteristics are shared with the former Astra FOOD (DFA).

ASTRAevo FOOD **DFE 30**


DIMENSIONS (mm)		
AISI 316L	A 203 B 106 C 197	

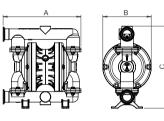
TECHNICAL DATA		
Fluid connections	• Tri-Clamp 1" • BSP • NPT	
Air connection	6 mm	
Max flow rate	52 l/m'	
Max air pressure	8 bar	
Displacement per cycle	70	

COMPOSITION		
Wetted parts	• AISI 316L Polished	
Diaphragms	• KEYFLEX+PTFE	
Valve Balls	• PTFE • AISI 316	
Valve Seats	• AISI 316 • UPPE	
Gaskets	• PTFE	

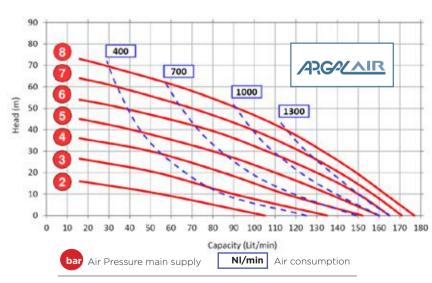
Connections scheme page 15

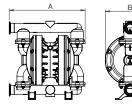
DFE 60

TECHNICAL DATA	
Fluid connections	• Tri-Clamp 1" • BSP • NPT
Air connection	1⁄4" BSP • NPT*
Max flow rate	76 l/m
Max air pressure	8 bar
Displacement per cycle	60


COMPOSITION	
Wetted parts	• AISI 316L Polished
Diaphragms	• KEYFLEX+PTFE
Valve Balls	• PTFE • AISI 316
Valve Seats	• AISI 316 • UPPE
Gaskets	• PTFE

Connections scheme page 15




ASTRAevo FOOD DFE 100

DFE 160

DIMENSIONS (mm)	
AISI 316L	A 310 B 203 C 322

DIMENSIONS (mm)

AISI 316L

A 273 B 170 C 288

TECHNICAL DATAFluid connections• Tri-Clamp 1" ½
• BSP*Air connection¾" BSP • NPT*Max flow rate130 l/m'Max air pressure8 barDisplacement per cycle240

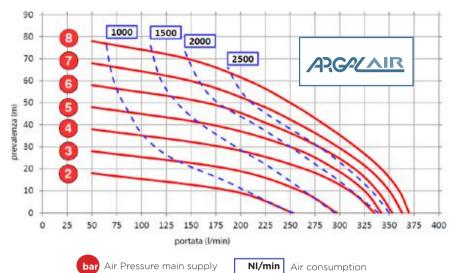
COMPOSITION	
Wetted parts	• AISI 316L Polished
Diaphragms	• KEYFLEX+PTFE
Valve Balls	• PTFE • AISI 316
Valve Seats	• AISI 316 • UPPE
Gaskets	• PTFE

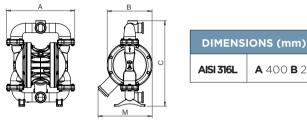
Connections scheme page 15

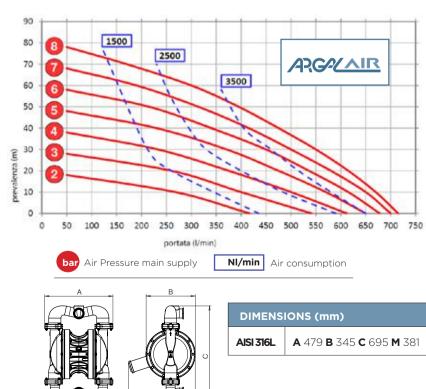
* Optional

TECHNICAL DATA	
Fluid connections	• Tri-Clamp 1"
Air connection	¾ " BSP ∙ NPT*
Max flow rate	175 l/m'
Max air pressure	8 bar
Displacement per cycle	440

COMPOSITION	
Wetted parts	• AISI 316L Polished
Diaphragms	• KEYFLEX+PTFE
Valve Balls	• PTFE • AISI 316
Valve Seats	• AISI 316 • UPPE
Gaskets	• PTFE


Connections scheme page 15


* Optional


ASTRAevo FOOD **DFE 400**

DFE 650

TECHNICAL DATA		
Fluid connections	• Tri-Clamp 2"	
Air connection	¹⁄₂" BSP • NPT*	
Max flow rate	370 l/m'	
Max air pressure	8 bar	
Displacement per cycle	1.340	

COMPOSITION	
Wetted parts	• AISI 316L Polished
Diaphragms	• NBR+PTFE
Valve Balls	• PTFE • AISI 316
Valve Seats	• AISI 316 • UPPE
Gaskets	• PTFE

Connections scheme page 15

* Optional

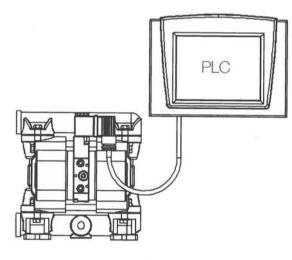
TECHNICAL DATA	
Fluid connections	• Tri-Clamp 2 ½ " • BSP*
Air connection	¾ " BSP ∙ NPT*
Max flow rate	715 l/m'
Max air pressure	8 bar
Displacement per cycle	3.820

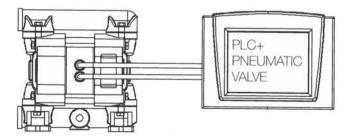
COMPOSITION

CONFOSITION		
Wetted parts	• AISI 316L Polished	
Diaphragms	• KEYFLEX+PTFE	
Valve Balls	• PTFE • AISI 316	
Valve Seats	• AISI 316 • UPPE	
Gaskets	• PTFE	

Connections scheme page 15

* Optional


REMOTE ASTRAevo



The fluid is carried by compressed air while an electric signal controls the speed. In this way, metering, measurement and other applications of the electric command can be majorly accurate. The "ASTRAevo FREE" versions can be interconnected with a large range of devices to completely automise the operation.

MAIN APPLICATIONS

- CHEMICAL INDUSTRY
- FLEXOGRAPHIC INDUSTRY
- PAINTING INDUSTRY
- PRINTING INDUSTRY
- WASTE WATER TECHNOLOGY

Mag-Drive & Mech-sealed Centrifugal Pumps	ARGAAIR AIR-METERING & AODD PUMPS PULSATION DAMPENERS	VERTICAL SUMP PUMPS
PUMPS	SUBMERSIBLE PUMPS	SELF-PRIMING PUMPS

ARGAL srl

Via Labirinto, 159 - 25125 BRESCIA - (Italy) Phone +39 030 3507011 - fax +39 030 3507077 info@argal.it - **www.argalpumps.com**

cod. 03-18 · EN